Log-concave sampling: Metropolis-Hastings algorithms are fast!

Raaz Dwivedi, Yuansi Chen, Martin Wainwright and Bin Yu
{raaz.rsk, yuansi.chen, wainwrig, binyu}@berkeley.edu

Sampling: A fundamental task!
Given a density, with unknown normalization constant, draw (approximate) samples from it
\[x_1, \ldots, x_t \overset{i.i.d.}{\sim} \pi(x) \propto e^{-f(x)} \]

\begin{itemize}
 \item Integration: \(\int g(x)\pi(x)dx \approx \frac{1}{n}\sum_{i=1}^{n} g(x_i) \)
 \item Optimization: \(\min_{x \in \mathcal{X}} g(x) \approx \min \{ g(x_1), \ldots, g(x_n) \} \)
\end{itemize}

Set-up and Objectives
Goal: Given access to \(f(x) \) and \(\nabla f(x) \) for any \(x \in \mathbb{R}^d \), derive non-asymptotic mixing-time bound for \(k \)
\[k_{\min}(\delta) = \min \{ k \mid \|P(x_k) - \pi^*\|_{TV} \leq \delta \} \]
with explicit dependence on \(d, \delta \) and other parameters.

Algorithms: Optimization vs Sampling
Discretization of gradient flow (ordinary differential equation) vs Langevin diffusion (stochastic differential equation):
\[\begin{align*}
 & \text{Gradient Flow} \\
 & \quad \dot{x}_t = -\nabla f(x_t)dt \\
 & \quad x_{k+1} = x_k - h \nabla f(x_k) \\
 & \text{Gradient Descent} \\
 & \quad \text{minimize this} \\
 & \text{Start at } x_0 \\
 & \text{Find } x_t \\
 & \text{where } h = \text{step size} \quad k = \text{no. of steps} \\
 & \text{Langevin Diffusion} \\
 & \quad \dot{x}_t = -\nabla f(x_t)dt + \sqrt{2}dB_t \\
 & \quad x_{k+1} = x_k - h \nabla f(x_k) + \sqrt{2h}N(0,1) \\
 & \text{Unadjusted Langevin algorithm (ULA)}
\end{align*} \]

Unadjusted Langevin algorithm (ULA)
\begin{itemize}
 \item ULA is biased: \(\|P(x_t) - \pi^*\|_{TV} \to 0 \) but \(\|P(x_k) - \pi^*\|_{TV} \not\to 0 \).
 \item Large \(h \) \(\Rightarrow \) Faster convergence, large asymptotic bias, and, small \(h \) \(\Rightarrow \) slower convergence, small bias.
\end{itemize}

Metropolis adjusted Langevin algorithm
\begin{itemize}
 \item MALA is made up of two steps
 \[Z = X_k - h\nabla f(X_k) + \sqrt{2h}N(0,1) \]
 (proposal step)
 \[P(X_{k+1} \leftarrow Z) = \min \left\{ 1, \frac{\pi^*(Z)P(Z \to X_k)}{\pi^*(X_k)P(X_k \to Z)} \right\} \]
 (accept-reject step)
 \item If case of rejection, \(X_{k+1} \leftarrow X_k \).
 \item Accept-reject step \(\Rightarrow \) Detailed balance \(\Rightarrow \) Unbiasedness \(\Rightarrow \) larger step size \(\Rightarrow \) Faster mixing.
\end{itemize}

Numerical Experiments
\begin{itemize}
 \item (a) SLC: \(d \) dependency
 \item (b) SLC: \(\delta \) dependency
 \item (c) WLC: \(d \) dependency
 \item (d) WLC: \(\delta \) dependency
\end{itemize}

Proof Techniques

High conductance implies fast mixing:
\[\Phi = \int_{\mathcal{A}_1} \frac{P(u \to A_1)\pi^*(u)du}{\pi^*(A_1)} \]
Mixing time: \(k_{\min}(\delta) \leq O(\log(1/\delta)/\Phi^2) \)

Proof Sketch
MALA: Bad conductance sets are far
Isoperimetry
\[d(A_1 \cup A_2) \text{ is large} \]
Upper bound on mixing time: \(k \)

References